Phone: 855.637.1434 Cart

You do not have any courses in your Wish List. Choose from popular suggestions below or continue with Subject or Grade


Product was successfully added to your Cart.

Summit Honors Physics, Semester 2 (SCI404B)

Summit Honors Physics, Semester 2 (SCI404B)

Add to WishList

Quick Overview

This advanced high school physics course surveys all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and introduces students to modern physics topics such as quantum theory and the atomic nucleus. Additional honors assignments include debates, research papers, extended collaborative laboratories, and virtual laboratories. This science course gives a solid basis for moving on to more advanced college physics courses.This is the second semester of SCI404.

Teacher-Led Course (one-time payment)   $450.00

Monthly Fees: Due Today:

Price as configured: $0.00


Course Overview

This advanced course surveys all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and introduces students to modern physics topics such as quantum theory and the atomic nucleus. Additional honors assignments include debates, research papers, extended collaborative laboratories, and virtual laboratories. The course gives a solid basis for moving on to more advanced college physics courses. The program consists of online instruction, virtual laboratories, and related assessments, plus an associated problem-solving book. This is the second semester of SCI404.


Course Outline


Unit 1: Introduction to Physics

Students explore physics and it place among the sciences, and confront concepts of the role in society of physics in now and in the past. Students examine the relationships of energy and the physical systems scientists and model systems use to study energy.

  • Semester Introduction
  • The History of Physics
  • Physics and Society
  • Physics and Science
  • Physical Systems and Models

Unit 2: Physical Units and Measurement

To prepare students for solving chemistry problems throughout the course, students learn about the metric system, significant figures, and conversion techniques. They learn the use of both base and derived metric unit. In a laboratory they take measurements and understand them within the context of solving problems in physics.

  • The Metric System: History and Use
  • The Metric System: Base Units
  • The Metric System: Derived Units
  • Measurement and Scientific Notation
  • Conversion Techniques
  • Significant Figures
  • Laboratory: Measurement and Significant Figures 1
  • Laboratory: Measurement and Significant Figures 2

Unit 3: Graphing and Problem Solving

To prepare for solving physics problems throughout the course, students learn about collecting and graphing data obtained from research. They create and interpret graphs and learn how to properly construct and label graphs. Students are also give an overview of the strategies needed to solve physics problems, including keeping units straight and estimating answers to apply to physics problems.

  • Graphing Physical Data
  • Graphs and Data Relationships
  • Laboratory: Creating and Interpreting Graphs 1
  • Laboratory: Creating and Interpreting Graphs 2
  • Problem Solving Strategies: Units
  • Problem Solving Strategies: Estimation
  • Honors Project 1

Unit 4: Kinematics

Students begin their direct study of physics with an examination of kinematic motion. They compare and contrast speed and velocity, employing a frame of reference. They construct velocity-time graphs. They then move to the concept of acceleration. Students perform two laboratories during this fundamental examination of moving bodies.

  • Rotation and Translation
  • Frame of Reference
  • Speed and Velocity
  • Position-Time and Velocity-Time Graphs
  • Laboratory: Kinematics 1
  • Laboratory: Kinematics 2
  • Acceleration
  • Acceleration and Displacement
  • Laboratory: Acceleration 1
  • Laboratory: Acceleration 2

Unit 5: Forces

Dynamics is the study of how forces affect the motion of a body. Students define and give examples of the various kinds of force that act upon objects to change their motion. Students confront the physical realities of Newton's three laws of motion. A laboratory gives students first-hand experience in applying Newton's laws.

  • Forces
  • Inertia and Newton's First Law
  • Newton's Second Law
  • Mass and Weight
  • Laboratory: Newton's Laws of Motion 1
  • Laboratory: Newton's Laws of Motion 2
  • Newton's Third Law

Unit 6: Net Forces and Vectors

Physicists are often confronted with determining the net force applied to a stationary or moving object. What will be the effect of the force or forces applied? To solve problems, students learn how to calculate net forces both graphically and through the use of trigonometry. This unit gives students a primer on the application of trigonometry to solve net force problems. There are two laboratories in this lesson so students can determine net forces and apply the proper mathematics to issues of the change in a body's motion.

  • The Net Forces Problem
  • Resolving Vectors
  • Adding Vectors
  • Laboratory: Working with Vectors
  • Net Forces at Equilibrium
  • Free Fall and Equilibrium
  • Calculating Net Force I
  • Calculating Net Force II
  • Friction
  • Laboratory: Net Force 1
  • Laboratory: Net Force 2

Unit 7: Motion in Two Dimensions

All students are familiar with certain kinds of moving objects, a cannonball shot through the air, a baseball thrown in from center field, the swinging arm of a grandfather clock, a spring bouncing up and down. These are all examples of motion in two directions, the subject of this unit. Students conduct experiments in spring motion and other forms of harmonic motion. Students apply the knowledge gained in their studies of kinematics and dynamics to a new type of motion of a physical body.

  • Projectile Motion
  • Uniform Circular Motion
  • Laboratory: Motion in Two Dimensions 1
  • Laboratory: Motion in Two Dimensions 2
  • Laboratory: Motion in Two Dimensions 3
  • Angular Displacement and Torque
  • Simple Harmonic Motion: Springs
  • Simple Harmonic Motion: Pendulum
  • Laboratory: Harmonic Motion 1
  • Laboratory: Harmonic Motion 2
  • Honors Project 2

Unit 8: Gravitation

This course in physics builds students' knowledge step by step. Their understanding of motion gives them a basis for understanding both Newton's and Einstein's views of gravity. They will work with some of the data that Kepler worked with. Students work problems with the inverse square law as applied to the gravitational attraction between two bodies. With a firm basis in acceleration, students see how Einstein explained gravity to the world.

  • History of Gravitation
  • Laboratory: Keplar's Laws
  • Universal Gravitation
  • Einstein and the Gravitational Field

Unit 9: Physics and Scientific Inquiry

It is traditional in science classes to start a course with a discussion of the scientific methods. In this course, however, students are engaged in the scientific method later in the semester, allowing students to work with scientific processes after they have a solid basis in the physics of motion. Students spend detailed time on questioning, forming hypotheses, and other science processes.

  • Physics Inquiry: Inductive Reasoning
  • Physics Inquiry: Questions and Hypotheses
  • Physics Inquiry: Experimentation
  • Physics Inquiry: Data Collection and Analysis
  • Physics Inquiry: Conclusions and Communicating

Unit 10: Semester Review and Test

Students prepare for and take the semester test.

Unit 11: Honors Project 1: Astronomical Distances

Students research and report on distances between stars and planets in linear and logarithmic scale; plot in scientific notation the distance from the Sun of the Voyager 1 and 2 spacecraft; calculate and graph other distances; and research and describe two proposed methods for interstellar rocket propulsion.

  • Astronomical Distances

Units 12: Honors Project 2: Spacecraft Landing

Students research and report on velocity and acceleration of a spacecraft; then design and test an apparatus that protects a raw egg when dropped. Then they describe how the design might be implemented in a spacecraft.

  • Biomechanics


Unit 1: Momentum

In his studies of motion Newton spoke of the "quality of motion." All three of Newton's laws were written about momentum???the subject of this unit. As a basis for understanding momentum, students first define it and apply the mathematics of momentum to an object, and then learn the law of conservation of momentum and its importance. The importance of the law of angular momentum is then discussed. Students do a laboratory that gives them data to which they can apply their understanding of momentum.

  • Linear Momentum and Impulse
  • Law of Conservation of Momentum
  • Momentum in Collisions 1
  • Momentum in Collisions 2
  • Laboratory: Momentum 1
  • Laboratory: Momentum 2
  • Conservation of Angular Momentum

Unit 2: Work

In this unit students take another step in understanding energy as it applies to physical systems by examining the concept of work. Using their knowledge of free-body diagrams, students work though problems involving direction of work problems, using simple and compound machines as a template by understanding work and power.

  • Work and Power
  • Direction of Force and Work
  • Laboratory: Work and Power
  • Machines and Mechanical Advantage
  • Laboratory: Simple and Compound Machines 1
  • Laboratory: Simple and Compound Machines 2
  • Honors Project 3

Unit 3: Energy

The conservation of energy is one of the fundamental laws of physics, and forms the basis for this unit. Students learn about the forms of energy and how one form can be transformed into another, realizing that energy is always conserved in the process. A laboratory gives students real experience with energy conservation in the sense of physics.

  • Types of Energy and Their Conversions
  • Kinetic and Potential Energy
  • Conservations of Energy 1
  • Conservations of Energy 2
  • Laboratory: Conservation of Energy 1
  • Laboratory: Conservation of Energy 2
  • Energy During Collisions

Unit 4: Thermal Energy

Thermal energy is a form of energy with a unique basis in atomic theory. Heat and thermal energy are discussed as resulting from the movement of particles and the motion in a many-particle system. Students come to know both the first and second laws of thermodynamics and get first-hand experience with heat engines. In addition, students calculate the heating of an object from solid to gas, including calculation of heat changes during change of state.

  • Kinetic-Molecular Theory
  • Specific Heat
  • Laboratory: Specific Heat 1
  • Laboratory: Specific Heat 2
  • States of Matter
  • Heat During Change of State
  • First Law of Thermodynamics
  • Second Law of Thermodynamics and Entropy

Unit 5: Waves

Heat is one way that energy moves from one place to another, and now students examine another way, through waves. Young physicists learn the characteristics of waves by examining them and then by studying sound as an example of one type of wave. This unit provides the fundamentals that students apply to the study of light.

  • Characteristics of Waves 1
  • Characteristics of Waves 2
  • Sound: Vibration and Waves
  • Qualities of Sound
  • Laboratory: Sound 1
  • Laboratory: Sound 2

Unit 6: Light

The electromagnetic spectrum contains radiation of various wavelengths, including X-rays, gamma rays, and visible light. Students study the properties light by exploring diffraction and the resulting interference. Reflection and refraction form the basis for students' understanding of the optics of mirrors and lenses. A laboratory on optics gives students the opportunity to create and interpret ray diagrams based on hands-on learning.

  • The Electromagnetic Spectrum
  • Diffraction and Interference
  • Reflection
  • Refraction
  • Mirrors
  • Lenses
  • Laboratory: Optics 1
  • Laboratory: Optics 2
  • Laboratory: Optics 3

Unit 7: Electric Forces

Students have explored the energy of motion and waves, as well as thermal energy. With this sound basis of what energy is and how it is conserved, students' attention is turned to electricity, another form of energy. This unit explores the electric charge and its behavior in electric fields. Students are introduced to the concept of an electrical field and apply various equations that define the behavior of a test charge in electric fields.

  • Static Electricity
  • Electric Force
  • Electric Fields
  • Laboratory: Electrostatics 1
  • Laboratory: Electrostatics 2
  • Electric Potential
  • Honors Project 4

Unit 8: Currents and Circuits

With a basis in understanding a force field and how to calculate and monitor electric potentials, students will diagram, construct, and interpret electric circuits. They will understand how a current is generated and how it flows through series and parallel circuits. In addition they will construct and interpret combined circuits, following the electric flow.

  • Current and Circuits
  • Current Electric Forces
  • Series Circuits
  • Parallel Circuits
  • Combined Circuits
  • Laboratory: Circuits 1
  • Laboratory: Circuits 2

Unit 9: Magnetism

Electricity and magnetism are both phenomena that students have a lot of experience with. In this unit the goal is to explore magnetism and then unite electricity and magnetism, introducing the phenomenon of electromagnetism. Students conduct experiments in electromagnetism to gain knowledge of energy relationships involved in the interplay of electricity and magnetism.

  • Magnets and Magnetic Fields
  • Forces in Magnetic Fields
  • Electromagnetic Induction
  • Laboratory: Magnetic Fields 1
  • Laboratory: Magnetic Fields 2

Unit 10: Modern Physics

When you read news or see it over electronic media you can understand the importance of some of the area of physics traditionally called modern physics. Solar panels, for example, work because light, striking certain surfaces, can cause the generation of electricity. Why this happens was explained by Einstein. This and other modern physics topics connect students to the importance of physics in the modern world.

  • Atomic Spectra and Quantum Theory
  • The Nature of Light and the Photoelectric Effect
  • Relativity
  • Structure of the Nucleus
  • Radioactivity

Unit 11: Semester Review and Test

Students prepare for and take the semester test.

Units 12: Honors Project 1: Mechanically Powered Toy

Students research, design, build, and test a mechanically powered toy.

Unit 13: Honors Project 2: Solar Power

Students research and report on electrical power needs of four major U.S. metropolitan areas; the amount of solar energy received at the Earth's surface at the latitudes and longitudes of these cities and how it varies monthly and annually; the types of solar concentrating power plants including their technology and the physics principles involved; the technology and physics principles involved in photovoltaic cells; and the amount of power that could be supplied by a solar concentrating power plant vs. photovoltaic cells for each metropolitan area.

Additional Information

Course Length 4 Months
Prerequisites N/A
Course Materials

Many K12 courses utilize physical materials in addition to the online content.  These materials may include the following.

Standard Kits

STANDARD kits contain K12 course materials that are required for completion of the course.  These kits include K12 authored materials and/or difficult to procure materials that a student needs to complete a course. Printed reference guides are not included in Standard kits.


CONSUMABLE kits contain only those materials from the standard kit that are intended for one time use. Families who purchase a Standard kit for Child A could later purchase a Consumable kit for Child B to complete the same course.


Offered for added convenience, ADDITIONAL kits contain easily obtained materials needed for the course which a family may already have in their home. 

Coach and/or Student Reference Guides are available for purchase with some courses.  Electronic versions of these reference guides are also available within digital courses.

Course Start Date

Courses Taught by a K12 Teacher

Courses with a teacher have designated start dates throughout Fall, Spring, and Summer. Full-year courses last 10 months and semester courses last 4 months. Courses are taught by teachers in K12 International Academy. For details on start dates, click here.

Teacher Assisted Yes, this course is taught by a K12 International Academy teacher. If you are looking for a teacher-supported option with additional flexibility and year-round start dates, click here to learn about the Keystone School, another K12 online private schooling option.
  1. Be the first to review this product

To use this course, you'll need a computer with an Internet connection.  Some courses require additional free software programs, which you can download from the Internet.

Hardware and Browsers (Minimum Recommendations)

Windows OS

  • CPU: 1.8 GHz or faster processor (or equivalent)

  • RAM: 1GB of RAM

  • Browser: Microsoft Internet Explorer 9.0 or higher, Mozilla Firefox 10.0 versions or higher, Chrome 17.0 or higher

  • At this time our users are encouraged not to upgrade to Windows 10 or Edge (the new browser)


Mac OS

  • CPU: PowerPC G4 1 GHz or faster processor; Intel Core Duo 1.83 GHz or faster processor

  • RAM: 1GB of RAM

  • Browser: Firefox 10.0 versions or higher, Chrome 17.0 or higher (Safari is not supported!)

Internet Connections

It is highly recommended that a broadband connection be used instead of dial up.


By requesting this information, you agree to have a K12 or school representative contact you directly at the number provided, whether by person or a device that will automatically dial your home or cell phone. Consent not required for purchases.

K12 Store

We have received your inquiry and you will start to receive additional information about our school offerings and programs. An enrollment consultant will contact you shortly.